You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets
Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu
Learning on Graphs Conference (LoG 2022) / 
Paper / 
Code
Best Paper Award
Are Large Kernels Better Teachers than Transformers for ConvNets?
Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu
ICML 2023 / 
Paper / 
Code
RT-GCN: Gaussian-based spatiotemporal graph convolutional network for robust traffic prediction
Yutian Liu, Soora Rasouli, Melvin Wong, Tao Feng, Tianjin Huang*
Information Fusion / 
Paper / 
Code
IF=18.6
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Jaiswal, Zhangyang Wang
ICLR 2023 / 
Paper / 
Code
Spotlight Presentation
Dynamic sparsity is channel-level sparsity learner
Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu
NeurIPS 2023 / 
Paper / 
Code
Enhancing Adversarial Training via Reweighting Optimization Trajectory
Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlaod Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy
ECML-PKDD 2023 / 
Paper / 
Code
Hop-count based self-supervised anomaly detection on attributed networks
Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy
ECML-PKDD 2022 / 
Paper / 
Code
|